A Survey of Componentwise Perturbation Theory in Numerical Linear Algebra

نویسندگان

  • Nicholas J. Higham
  • NICHOLAS J. HIGHAM
چکیده

Perturbation bounds in numerical linear algebra are traditionally derived and expressed using norms. Norm bounds cannot reflect the scaling or sparsity of a problem and its perturbation, and so can be unduly weak. If the problem data and its perturbation are measured componentwise, much smaller and more revealing bounds can be obtained. A survey is given of componentwise perturbation theory in numerical linear algebra, covering linear systems, the matrix inverse, matrix factorizations, the least squares problem, and the eigenvalue and singular value problems. Most of the results described have been published in the last five years. Our hero is the intrepid, yet sensitive matrix A. Our villain is E, who keeps perturbing A. When A is perturbed he puts on a crumpled hat: e A = A+ E. G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory (1990)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survey of Componentwise Perturbation Theory

Perturbation bounds in numerical linear algebra are traditionally derived and expressed using norms. Norm bounds cannot reeect the scaling or sparsity of a problem and its perturbation, and so can be unduly weak. If the problem data and its perturbation are measured componentwise, much smaller and more revealing bounds can be obtained. A survey is given of componentwise perturbation theory in n...

متن کامل

A Survey of Componentwise Perturbation Theory

Perturbation bounds in numerical linear algebra are traditionally derived and expressed using norms. Norm bounds cannot reflect the scaling or sparsity of a problem and its perturbation, and so can be unduly weak. If the problem data and its perturbation are measured componentwise, much smaller and more revealing bounds can be obtained. A survey is given of componentwise perturbation theory in ...

متن کامل

Componentwise Perturbation Theory for Linear Systems With Multipte Right-Hand Sides

Existing definitions of componentwise backward error and componentwise condi tion number for linear systems are extended to systems with multiple right-hand sides and to a general class of componentwise measure of perturbations involving Holder p-norms. It is shown that for a system of order n with r right-hand sides, the componentwise backward error can be computed by finding the minimum p-nor...

متن کامل

A new approach to solve fuzzy system of linear equations by Homotopy perturbation method

In this paper, we present an efficient numerical algorithm for solving fuzzy systems of linear equations based on homotopy perturbation method. The method is discussed in detail and illustrated by solving some numerical examples.

متن کامل

New Relative Perturbation Bounds for Ldu Factorizations of Diagonally Dominant Matrices

This work introduces new relative perturbation bounds for the LDU factorization of (row) diagonally dominant matrices under structure-preserving componentwise perturbations. These bounds establish that if (row) diagonally dominant matrices are parameterized via their diagonally dominant parts and off-diagonal entries, then tiny relative componentwise perturbations of these parameters produce ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006